Long Time Stability of a Classical Efficient Scheme for Two-dimensional Navier-Stokes Equations
نویسندگان
چکیده
We prove that a popular classical implicit-explicit scheme for the 2D incompressible Navier–Stokes equations that treats the viscous term implicitly while the nonlinear advection term explicitly is long time stable provided that the time step is sufficiently small in the case with periodic boundary conditions. The long time stability in the L2 and H1 norms further leads to the convergence of the global attractors and invariant measures of the scheme to those of the NSE itself at vanishing time step. Both semi-discrete in time and fully discrete schemes with either Galerkin Fourier spectral or collocation Fourier spectral methods are considered.
منابع مشابه
A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملOn the long-time stability of the implicit Euler scheme for the 2D space-periodic Navier-Stokes equations
In this paper we study the stability for all positive time of the fully implicit Euler scheme for the two-dimensional Navier–Stokes equations. More precisely, we consider the time discretization scheme and with the aid of the discrete Gronwall lemma and the discrete uniform Gronwall lemma we prove that the numerical scheme is stable.
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملAn efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations
We investigate the long time behavior of the following efficient second order in time scheme for the 2D Navier-Stokes equation in a periodic box: 3ω − 4ω + ω 2k +∇(2ψ − ψ) · ∇(2ω − ω)− ν∆ω = f, −∆ψ = ω. The scheme is a combination of a 2nd order in time backward-differentiation (BDF) and a special explicit Adams-Bashforth treatment of the advection term. Therefore only a linear constant coeffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 50 شماره
صفحات -
تاریخ انتشار 2012